LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034

M.Sc. DEGREE EXAMINATION - CHEMISTRY

SECOND SEMESTER - APRIL 2013

CH 2954 - NUCLEAR AND RADIO CHEMISTRY

Date: 04/05/2013	Dept. No.	Max.: 100 Marks
Time: 9:00 - 12:00		

Part - A

Answer all the questions

 $(10 \times 2 = 20)$

- 1. What is meant by nuclear isomerism?
- 2. What is meant by binding energy of a nucleus?
- 3. Derive a relationship between $t_{1/2}$ and decay constant of a radioactive isotope?
- 4. When does a nucleus emit gamma ray?
- 5. Explain electron capture with an example.
- 6. What is group displacement law?
- 7. What are compound nucleii?
- 8. What is meant by enriched uranium?
- 9. Give principle of carbon dating?
- 10. Why are electrons not found inside the nucleus?

Part - B

Answer any eight questions

 $(8 \times 5 = 40)$

- 11. What is the role of mesons in stabilizing the nucleus? What are various types of mesons?
- 12. What are 'magic numbers'? What is its significance?
- 13. Explain Geiger-Nuttal Rule and its application.
- 14. An isotope of plutonium with mass number 240 disintegrates to form stable 208 Pb. Assuming only α and β -particles are emitted, deduce the number of α and β emitted in this process.
- 15. Why arenucleare fusion reactions not employed for energy tapping?
- 16. Natural isotopic abundance of ⁸⁵Rb and ⁸⁷Rb are 72% and 28% respectively. Calculate the atomic weight of rubidiumobtained from natural sources?
- 17. Explain the principle of scintillation counters?
- 18. Mention any two coolants used in a nuclear reactors and advantages of using these coolants.
- 19. Account for the fact that ³⁹K and ⁴¹K are known but not ⁴⁰K.
- 20. What arethermal neutrons? How are they obtained?
- 21. Briefly explain 'Auger effect'?
- 22. Explain the principle of Mossbauer spectroscopy.

Part - C

Answer any four questions.

 $(4 \times 10 = 40)$

- 23. Describe an experiment which proves that the size of nucleus is much smaller than than the size of an atom.
- 24. What are the salient features of 'liquid drop model' of nucleus? How does this theory explain [i]nuclear fission and [ii]nuclear fusion (4+6)
- 25. Discuss advantages and disadvantages of using neutron diffraction technique in comparison with electron diffraction technique.
- 26. Draw a signal size to applied potential graph for a radio particle and explain different regions in it.
- 27. Discuss the production, properties and models for solvated electrons.
- 28. Explain neutron activation analysis and advantages of this technique.

